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inhomogeneous broadening by point defects 

D L Orth, R J Mash1 and J L Skinner 
Theoretical Chemistry Institute and Depanment of Chemistry, University of Wismnsin. 
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Received 7 December 1992 

Abstract Previous theories of inhomogeneous broadening by pint defects of impurity 
transitions in crystals have invoked a continuum approximation for the defect positions. We 
generalize these theories by treating lhe crystal as a discrete lattice. At low defect densities 
we recover the mulu of the continuum theory, finding a Larentzian lineshape. At high defect 
densities the lineshape is approximately Gaussian. At intermediate densities, the lineshape 
displays satellite stmcture due to different Eonfigurations of nearby defects. For all densities we 
derive approximate analytic expressions for the lineshape that are in good agreement with exact 
numericd results. 

1. Introduction 

When dilute impurities are present in a host crystal lattice, at IOW temperahlres the absorption 
zero-phonon line of a distinct impurity transition has a breadth that is due to the local 
disorder in the vicinity of each impurity. That is, physical or chemical imperfections 
in the crystal produce a unique microscopic environment around each impurity, causing 
a shift of its transition frequency. The superposition of many sharp lines with different 
frequencies (from the many impurities) leads to a smooth lineshape usually much broader 
than that due to a single impurity. This situation is called inhomogeneous broadening. The 
inhomogeneous impurity lineshape can provide a useful probe of disorder in crystals, which 
plays an important role in determining electronic and structural properties. Specifically, 
with a microscopic theory one would hope to be able to determine from the experimental 
lineshape the concentration and nature of the crystal defects. 

A comprehensive review of the theory of inhomogeneous broadening in crystals was 
provided over two decades ago by Stoneham [ I ] .  One of the main assumptions of the 
theory is that the defects responsible for line broadening are uncorrelated with each other, 
which restricts the validity of the theory to low defect densities, in which case it is useful 
to treat the lattice as a continuum. Within this picture Stoneham finds that dislocations lead 
to lineshapes that are nearly Gaussian, while point electric dipole or strain defects produce 
a Lorentzian lineshape. These general features have been verified experimentally [2, 31. 

Subsequently Davies [4] focused on the case of point defects within the continuum 
approximation, and found that if defects are excluded from a spherical region of radius 
R around the impurity, in the limit p R 3  >> 1 ( p  is the defect density) the lineshape 
becomes Gaussian. Much the same conclusion was arrived at somewhat later but apparently 
independently by Kador IS]. One could realize the above inequality by keeping R fixed 
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and letting p become large, but this is in contradiction with the assumption of low defect 
density implicit in these theories. Alternatively one could consider a fixed (and small) p, 
and let R become large. Here, however, it is not clear physically why defects should be 
excluded from within a large sphere around an impurity. Therefore it seem to US that there 
are some problems in deriving a Gaussian lineshape within the continuum theory. 

In addition, whereas in many crystals defect densities really are quite low, in several 
highly disordered crystals such as benzoic acid and p-terphenyl (which have attracted 
some recent attention [6-12] as possible well defined model systems for truly amorphous 
solids) and in mixed crystals, defect densities can be much higher. In order to understand 
spectroscopic experiments on these systems, especially the appearance and shape of satellite 
bands [13,14], one must go beyond the continuum approximation. 

For the above reasons we decided to generalize the traditional low-density continuum 
theory of inhomogeneous broadening by point defects to a lattice model that is capable 
of describing systems with high defect densities. In section 2 we introduce the theoretical 
model, derive a general expression for the lineshape that is amenable to numerical evaluation, 
and calculate analytic results valid at low and high defect densities, finding Lorentzian and 
Gaussian lineshapes respectively. We also present useful approximations to the lineshape 
at intermediate defect densities, when satellite bands due to nearby defects are present. In 
section 3 we compare our approximate results to exact numerical calculations, and in section 
4 we conclude with a few remarks. 

2. Lattice model of inhomogeneous lineshapes 

In our theoretical model we consider a single impurity chromophore residing at a specific 
substitutional or interstitial site of the host crystal, which we will take to be the origin. 
We also imagine that point defects, which could include chemical or isotopic impurities 
or vacancies, can reside at a well defined set of substitutional or interstitial sites. This set 
of sites accessible to defects will be labelled by the index i ,  and will be called the defect 
lattice. For simplicity we will assume that there is only one kind of defect, although the 
theory could easily be generalized to relax this restriction. Each site i will then be described 
by a discrete occupation variable &. which can take on the values 0 or I ,  corresponding 
respectively to the absence or presence of a defect. For simplicity we will assume that at 
each site i the probability of being occupied by a defect is p. which is independent of the 
occupancy of the other sites. Thus if we denote the set of occupation variables by the vector 
5 = ( E , ,  h, . , .), and the probability of obtaining a defect configuration E by P(E), then 

and 

P(C)  = P621 + (1 - P)620. 

This probability distribution is clearly normalized such that 

Thus we see that in our model the defects are uncorrelated except that each site of the 
defect lattice can be occupied by at most one defect. Our assumption that each defect site is 
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described by an independent occupation variable may not always be a good approximation, 
in which case a more elaborate theory involving clustering effects could presumably be 
worked out. 

We next assume that the presence of a single defect at site i shifts the transition frequency 
of the chromophore by an amount u(rj), which, as indicated, depends on the position of 
the defect, ri .  We further assume that the total perturbation of the chromophore's transition 
frequency is simply the sum of the shifts from the individual defects [I]. Therefore. for a 
particular defect configuration E,  the transition frequency is 

where 00 is the transition frequency for the chromophore in a crystal with no defects. 
If we now neglect the phonon side band of the chromophore transition and any 

homogeneous broadening of the zero-phonon line [15-17], then for each configuration the 
lineshape is simply a delta function, and the observed inhomogeneous lineshape is the 
configurational average 

= @(m - @ ( E ) ) )  (5 ) 

where 

We note that at low temperatures homogeneous linewidths are usually completely 
overwhelmed by inhomogeneous broadening and so the above formulation is reasonable. 
At higher temperatures, when homogeneous broadening cannot be neglected, its effect can 
be included by an appropriate convolution with the inhomogeneous lineshape. 

To facilitate the configurational average we can write the delta function in its spectral 
representation, and then the lineshape becomes a Fourier transform of the 'generating 
function' G(r): 

where 

). (8) 

Writing the exponential of the sum as the product of exponentials allows us to perform the 
configurational average to obtain 

G ( ~ )  ~ (e-irEt M r ; )  

This can be further rearranged to give 
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which, together with equation (7), provides a useful expression for either exact numerical 
or approximate analytical evaluation. 

First let us consider the limit of low defect density, when p << I .  In this case the 
logarithm can be expanded to obtain 

It will also be useful to expand equation (10) in powers of u(r) to obtain 

where 

M ,  = u(rj)" 

and the first few g,(p)  are given by 

If the inequalities 

are satisfied, then it is permissible to truncate equation (12) at second order, which leads to 
a Gaussian expression for the lineshape: 

~ ( w )  = (I/w%7)e-"4'2/1 (17) 

where 

& = w +   MI 

and 

U' = ( p  - p2)M2. (19) 

Now let us specialize to the case of dipolar chromophoredefect interactions. Supposing 
first that these interactions have an electrostatic origin, if we assume that the difference 
between the permanent electric dipole moments of the excited and ground state chromophore 
isp,, and that the presence of a defect changes the electric dipole moment of the defect site 
by an amountpd, then the frequency shift due to a single defect at position r is 
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where fie = p c / p c ,  pc is the magnitude of p c ,  and similarly for f i d  and pd. This can be 
rewritten as 

u( r )  = ~ i @ P ( a ) ( a / r ) ~  (21) 

where A = pcpd/lia3 has units of frequency, W is a dimensionless function of the angles 
SI = (e, 4). and u3 is the volume per lattice site of the defect lattice. One finds, conveniently, 
that the frequency shift from elastic strain interactions with point defects has a form identical 
to equation (21) [1,4]. 

In the low-density limit one can obtain an approximate expression for the lineshape by 
converting the sum in equation (11) to the integral 

In G(t) = Jd" r2 dr 1 df) ( e - ~ f A w R v r 3  - 1) (22) a3 

and then taking the limits R -+ 0 and Rz + CO. In fact, at this point our theory becomes 
identical to Stoneham's; using the fact that 

which follows from the definition of *(a) in equation (21), he evaluates this integral in 
his appendix IIl to obtain [ I ]  

(24) G ( ~ )  = e-iAmt-riti 

with 

This then produces the Lorentzian lineshape 

r ( w )  = (r/R)/[(w - w ) ~  + r2] 
with 

ui = oa + Aw. (28) 

In order to ascertain when one might obtain the Gaussian lineshape of equation (17), 
we can estimate the magnitudes of M2, M3, and M4 in the inequalities (15) and (16) by 
again converting sums to integrals, this time in equation (13), to get 

Using equation (23) we see that M I  = 0, and for the higher values of n one can smoothly 
take the limit R2 -+ CO to obtain 

M, = [4nAn/3(n - l)](a/R)3("-')(W") n 2 (30) 
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where 

Assuming for a moment that the chromophore occupies a single site of the defect lattice, 
which is thereby inaccessible to defects, it is reasonable to determine the lower cutoff R by 
setting a3 = 4 x R 3 / 3 .  In this case the inequalities (15) and (16) necessary for a Gaussian 
lineshape become 

I ~ ~ ( P ) ( ~ ~ ) / ~ S ~ ~ ( P ) ~ ( ~ ~ ) ~ I  << 1 (32) 

k d P )  W3)/3J&Z(P) ( ~ 2 ~ ) 3 ' 2 1  << 1. 

and 

( 3 3 )  

For small p, since g , ( p )  N p, these inequalities will not be satisfied (indeed, we have just 
seen above that the Iineshape is approximately Lorentzian in this limit). The largest p that 
is necessary to consider is p = 4, since for any larger defect densities one would simply 
redefine the problem so that the reference crystal has all defect sites occupied by defects. 
For this value of p the left hand side of equation ( 3 3 )  is identically 0, and equation ( 3 2 )  
becomes 

(Y4) /9 (YY << 1 (34)  

which suggests that the lineshape will in fact be approximately Gaussian for p = 
Next let us recall that Davies [4] considered the case of dipolar interactions within the 

continuum model, and that defects were excluded from a large sphere of radius R around 
the chromophore. We can discuss this case within our lattice model by taking p << I (which 
is when the continuum model is valid) and R >> Q .  When the latter condition is satisfied, 
equation ( 3 0 )  for M,, becomes an excellent approximation, and, ignoring numerical factors, 
the inequalities of equations (15) and (16) yield simply p R 3  >> 1 (where p = p/n3 is the 
defect density). Thus in this limit the lineshape is Gaussian, and is given by equation (17). 
where ij = WO, and 

? '  

U = -/ddnY(n)* p h z a 3  
3R3 ( 3 5 )  

which is in agreement with Davies [4]. 
Although the idea of excluding defects from within a sphere around the chromophore is 

not particularly physically reasonable in our minds, the fact that in this case the lineshape 
tends to a Gaussian does suggest an approximate scheme for calculating the lineshape when 
no defects are excluded, which will be important for intermediate p. when this lineshape is 
neither Gaussian nor Lorentzian. The basic idea is to treat the nearby and hence strongly 
interacting defects exactly, while treating the defects farther away in an approximate manner. 
A similar scheme was also suggested by Stoneham [ l ]  and by Jaaniso eta1 [14]. To this 
end, let us assume that the defects on lanice sites i = 1,2, . . . S are to be treated exactly. 
To do so, we begin with equation (3, and explicitly perform the configurational average 
over the occupation variables 61, cz, . . . b. The result can be written as 
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where the S special sites are excluded in E:. As seen, there are ZS terms in the sum, each 
corresponding to a distinct defect configuration j (for the S sites), which is specified by a 
particular realization of the occupation variables, labelled e{,  tl. . . .ti. The weight factors 
wj are of the form 

wj  = p” (1 - p)S-” (37) 

where 

S .  
mi = 

i = l  

which is simply the number of occupied sites in configuration j ,  and the frequency shifts 
are given by 

S 

w, = Ce/u(ri) .  (39) 
i = l  

At thii point we can proceed as before, obtaining 

where 

~ t ( ~ )  = ( e - i r C t u ( r , )  ) .  

If the generating function G’(t) leads to a lineshape I’(w), where 

then the full lineshape can be written simply as 

25 

I ( u )  = ~ w j I ‘ ( w - u j ) .  
j = l  

(43) 

This kind of analysis is especially useful if enough sites have been treated exactly so that the 
residual lineshape [’(U) is approximately Gaussian. This will be the case if the inequalities 
of equations (15) and (16), with M, replaced by their ‘primed‘ counterparts 

are satisfied. If they are, then the lineshape I’(w) is given by equation (17), but with MI 
and MZ replaced by Mi and MiW;. 
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Figure 1. Absorption lineshape for p = 0.001. The cxxt result is given by the full curvc. The 
Larenaian approximation is given by the chain CUNC. 

3. Results 

In order to obtain numerical results with which to compare our analytic approximations, we 
consider a simple cubic defect lattice whose origin is occupied by the chromophore, and for 
simplicity we assume that the dipolar chromophoredefect interaction is electrostatic and 
that all permanent dipoles are in the z  ̂ direction so that 

q(e,d) = 1 -3co~2e.  (45) 

With this model, the Fourier transform in equation (7), with equation (10) for G(t ) ,  
was performed numerically. For this calculation we of course considered a finite number 
of sites. From equation (5) we know that in this case the exact lineshape is actually a sum 
of (very closely spaced) delta functions. In the time domain this means that the generating 
function G(t )  decays approximately to zero, but then has recurrences, albeit at very long 
times. Therefore, in order to perform the transform numerically, we added a convergence 
factor with a very small amount of exponential damping. The damping rate was decreased 
and the number of sites was increased until the results were independent of both. 

We present results for p = 0.001 in figure 1, where we plot the numerically exact 
lineshape versus the dimensionless frequency w / A ,  and we set the reference frequency 00 
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Figure 2. Absorption lineshape for p = 0.05. The exact result is given by the full cuwe. 
The chain cuwe represents an exact treatment of the six nearest-neighbour defect sites. with the 
Gaussian approximation for the rest of the crystal. 

to zero. The weak structure in the wings of the line is real, and not due to numerical noise. 
In comparison, we have also plotted the Lorentzian approximation from equation (27), which 
should be valid in this low-density case. We see that although this approximation does not 
give the weak structure correctly (as a result of converting the sum in equation (1  1) to an 
integral) it does provide a good approximation to the central peak. 

Figure 2 presents the results for p = 0.05. The exact result shows significant satellite 
structure, which is due to different configurations of the nearest defects. The form of the 
lineshape suggests that a reasonable approximation might be to treat the six sites that are 
nearest neighbours of the chromophore exactly, and then use the Gaussian approximation 
for the remaining defects, as discussed at the end of the last section. To this end, we have 
evaluated the left hand side of the inequalities (15) and (16) for p = 0.05, with equation 
(44) for ML. This gives 0.11 and 0.12 respectively, which indicates that this approach may 
be useful. Thus the approximation from equation (43), with equations (17)-(19) and (44). 
is also shown in figure 2, which gives reasonable but not quantitative agreement wit:: the 
exact result. To obtain quantitative agreement one would have to treat more defect sites 
exactly. 

In figure 3 we show results for p = 0.25. The exact lineshape shows structure in the 
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Figure 3. Absorption lineshape for p = 0.25. 'The exact rtsult is given by the full curve. 
The chain c w e  represents an exact treaumnt of the six "west-neighbour defect sites, with the 
Gaussian approximarion for the rest of the crystal. As shown, it is indistinguishable tiom the 
exact result. except near the maximum 

form of shoulders on a central peak. This larger value of p strengthens the inequalities of 
equations (15) and (16), and so treating the six nearest neighbours exactly with the Gaussian 
approximation for the rest of the sites should work better than it did for p = 0.05. This 
result is also shown in figure 3, giving excellent agreement with the exact result. 

Figure 4 shows the results for p = 0.5. the highest possible value for p. The exact 
result shows a single broad feature. As suggested by the approximate argument leading to 
equation (34), and confirmed by an exact evaluation of the left hand side of the inequalities 
(15) and (16), the Gaussian aproximation of equation (17) (without treating any sites exactly) 
should be reasonably good. This calculation is also shown in figure 4, giving pretty good 
agreement with the exact result. To improve upon this result we can truncate the expansion 
of equation (12) at fourth order, and perform the Fourier transform numerically. As shown 
in figure 4 this approach produces a very accurate liner2pe. Alternatively. one can  treat the 
nearest neighbours exactly, as discussed above, which i d s  to a lineshape indistinguishable 
from the exact result, and is not shown. 
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w l A  
Figure 4. Absorption lineshape for p = 0.50. The exact mult is given by the full cuwe, The 
chain cuwe represents the Gaussian approximarion with no defect sites treated exactly. The 
dotted curye follows from the fourth-order truncation of equation (12). and numerical Fourier 
msformation. 

4. Concluding remarks 

In summary, we have considered a lattice model of inhomogeneous broadening by point 
defects that is valid for any defect density. In the limit of low defect density, we recover the 
continuum theory of Stoneham [ll, finding a lineshape that is approximately Lorentzian. 
When the defect density is not low, the lineshape shows significant structure due to the 
configurations of nearest-neighbour sites. At the largest defect density, where half the sites 
are occupied by defects, the lineshape becomes approximately Gaussian. We have developed 
several approximation schemes that provide accurate lineshapes for all densities, as verified 
by comparison with exact numerical calculations. 

For numerical computation we assumed that possible defect sites formed a simple cubic 
lattice, and that the defect-chromophore interaction was given simply by the zz component of 
the dipole tensor. More complicated and realistic lattices and interactions could certainly be 
studied-we do not expect any qualitatively different results. It would also be interesting 
to consider the case of defect-defect or defect-chromophore correlation (apart from the 
multiple occupancy exclusion treated herein), e.g. clustering. Experimental results that 
might benefit from a theoretical analysis of the sort described in this paper have been 
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obtained [13, 141 for the mixed crystal systems LaC13-,Br,:Nd3+ and SrFBrl-,CI,:Sm2+. 
Indeed, the evolution of the absorption spectra in figures 1 4  (as the defect concentration 
is increased) qualitatively describes that observed experimentally [14]. 

In the case of chromophore specfroscopy in glasses, it is clear that some 
interesting non-linear line-narrowing and hole-burning experiments probe the correlation 
of the inhomogeneous frequency distributions for two different h-ansitions on the same 
chromophore [18, 191. It will be interesting to calculate this correlation for crystalline 
hosts. Within the continuum model some work on this problem has already appeared [ZO]. 
The correlation of transition frequencies on diferent chromophores is of great interest in 
the context of energy transfer and localization, and we will be generalizing om previous 
work [21] on glasses to the present lattice model of crystals, 

Finally, some fascinating fluorescence excitation spectroscopy experiments on single 
chromophores in disordered crystals have shown evidence of spectral diffusion-the 
transition frequency of individual molecules jumps around in time [ 10,l I]. It has been 
suggested that this dynamics results from rearrangements of the local environment around 
each chromophore. If this local environment is due to point defects, then a dynamic 
generalization of the lattice model considered herein may describe some aspects of these 
experiments. We are currently pursuing this idea. 

D L Orth et a1 
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